Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice

J Lipid Res. 2003 May;44(5):1001-9. doi: 10.1194/jlr.M200489-JLR200. Epub 2003 Feb 16.

Abstract

Cholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic. These mice were characterized extensively to understand how cyp7A1 affects lipid and bile acid homeostasis in different tissue compartments and whether gender plays a modifying role. Both male and female cyp7A1-deficient mice had decreased hepatic LDL receptors, unchanged hepatic cholesterol synthesis, increased intestinal cholesterol synthesis and bile acid transporters, and decreased fecal bile acids but increased fecal sterols. In females, cyp7A1 deficiency also caused changes in hepatic fatty acid metabolism, decreased hepatic canalicular bile acid transporter, Bsep, and gallbladder bile composition altered to a lithogenic profile. Taken together, the data suggest that cyp7A1 deficiency results in a proatherogenic phenotype in both genders and leads to a prolithogenic phenotype in females.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bile Acids and Salts / metabolism*
  • Cholestanetriol 26-Monooxygenase
  • Cholesterol / blood
  • Cholesterol / metabolism
  • Cholesterol 7-alpha-Hydroxylase / deficiency*
  • Cholesterol 7-alpha-Hydroxylase / genetics
  • Cholesterol 7-alpha-Hydroxylase / metabolism
  • Fatty Acids / metabolism
  • Female
  • Gallbladder / metabolism
  • Hypercholesterolemia / blood
  • Hypercholesterolemia / genetics*
  • Hypercholesterolemia / metabolism
  • Intestinal Mucosa / metabolism
  • Lipids / blood*
  • Liver / enzymology
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred Strains
  • Mice, Knockout
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Receptors, LDL / metabolism
  • Steroid Hydroxylases / genetics
  • Steroid Hydroxylases / metabolism
  • Sterols / metabolism

Substances

  • Bile Acids and Salts
  • Fatty Acids
  • Lipids
  • RNA, Messenger
  • Receptors, LDL
  • Sterols
  • Cholesterol
  • Steroid Hydroxylases
  • Cholesterol 7-alpha-Hydroxylase
  • Cholestanetriol 26-Monooxygenase
  • Cyp27a1 protein, mouse