Nitric oxide is a ubiquitous free radical that plays a key role in a broad spectrum of signaling pathways in physiological and pathophysiological processes. We have explored the transcriptional regulation of inducible nitric-oxide synthase (iNOS) by Krüppel-like factor 6 (KLF6), an Sp1-like zinc finger transcription factor. Study of serial deletion constructs of the iNOS promoter revealed that the proximal 0.63-kb region can support a 3-6-fold reporter activity similar to that of the full-length 16-kb promoter. Within the 0.63-kb region, we identified two CACCC sites (-164 to -168 and -261 to -265) that bound KLF6 in both electrophoretic mobility shift and chromatin immunoprecipitation assays. Mutation of both these sites abrogated the KLF6-induced enhancement of the 0.63-kb iNOS promoter activity. The binding of KLF6 to the iNOS promoter was significantly increased in Jurkat cells, primary T lymphocytes, and COS-7 cells subjected to NaCN-induced hypoxia, heat shock, serum starvation, and phorbol 12-myristate 13-acetate/ ionophore stimulation. Furthermore, in KLF6-transfected and NaCN-treated COS-7 cells, there was a 3-4-fold increase in the expression of the endogenous iNOS mRNA and protein that correlated with increased production of nitric oxide. These findings indicate that KLF6 is a potential transactivator of the human iNOS promoter in diverse pathophysiological conditions.