Substantial reduction in corneal ALDH3A1 enzymatic activity associated with eye pathology was previously reported in C57BL/6J mice subjected to ultraviolet radiation (UVR). The aim of this study was to examine whether UVR diminishes corneal ALDH3A1 expression through modifications at the transcriptional, translational, or post-translational level. Adult C57BL/6J mice were subjected to UVR exposure (302 nm peak wavelength) for various periods of time, and corneal ALDH3A1 mRNA and protein levels were monitored by Northern and Western blot analysis, respectively. In addition, ALDH3A1 enzymatic activity was determined as a measure of post-translational modification. Mice exposed to 0.2 J/cm(2) UVB radiation demonstrated an extensive decrease, approximately 80%, in mRNA and protein levels, as well as enzymatic activity of corneal ALDH3A1. Significant reductions in corneal ALDH3A1 enzymatic activity were detected in mice 96 h after exposure to 0.05 and 0.1 J/cm(2) UVB radiation; no significant changes were observed in mRNA and protein levels. These data suggest that UVB down-regulates corneal ALDH3A1 expression at the transcriptional and/or post-translational level depending on the dose of UVB. Reduction in gene transcription requires UVB doses greater than or equal to 0.2 J/cm(2). In vitro experiments with human corneal epithelial cell lines stably transfected with human ALDH3A1 cDNA, and with purified recombinant human ALDH3A1 protein, indicated that ALDH3A1 undergoes post-translational modifications after UVR exposure. These modifications result in both covalent and non-covalent aggregation of the protein with no detectable precipitation. Such conformational changes may be associated with the function of ALDH3A1 as a chaperone-like molecule in the cornea.