Chemoreflexes--physiology and clinical implications

Acta Physiol Scand. 2003 Mar;177(3):377-84. doi: 10.1046/j.1365-201X.2003.01083.x.

Abstract

The chemoreflexes are important modulators of sympathetic activation. The peripheral chemoreceptors located in the carotid bodies respond primarily to hypoxaemia. Central chemoreceptors located in the region of the brainstem respond to hypercapnia. Activation of either the hypoxic or hypercapnic chemoreflex elicits both hyperventilation and sympathetic activation. During apnoea, when the inhibitory influence of stretch of the pulmonary afferents is eliminated, there is a potentiation of the sympathetic response to both hypoxia and hypercapnia. This inhibitory influence of the pulmonary afferents is more marked on the sympathetic response to peripheral compared with central chemoreceptor activation. The arterial baroreflexes also have a powerful inhibitory influence on the chemoreflexes. This inhibition is again more marked with respect to the peripheral compared with central chemoreflexes. In patients with hypertension, there is a marked increase in the sympathetic and ventilatory response to hypoxaemia. During apnoea, with elimination of the inhibitory influence of breathing, the sympathetic response in untreated mild hypertensive patients is strikingly greater than that seen in matched normotensive controls. This potentiated peripheral chemoreflex sensitivity in hypertension may be explained in part by impaired baroreflex function in these patients. Enhanced peripheral chemoreflex sensitivity is also evident in patients with obstructive sleep apnoea. This peripheral chemoreflex enhancement is not explained by obesity, as obese individuals have a selective potentiation of the central chemoreceptors with peripheral chemoreflex responses similar to those seen in lean controls. Increased sensitivity to hypoxaemia has important implications in patients with obstructive sleep apnoea who experience repetitive and severe hypoxaemic stress. Tonic activation of the chemoreflex may also contribute to the high levels of sympathetic activity evident even during normoxic daytime wakefulness in sleep apnoea patients. Administration of 100% oxygen in patients with sleep apnoea results in reductions in heart rate, blood pressure and central sympathetic outflow. In patients with heart failure, the central chemoreflex response to hypercapnia is markedly and selectively enhanced. This increased central chemoreflex sensitivity may contribute to the development of central sleep apnoea in heart failure patients. Administration of 100% oxygen does not lower sympathetic activity in patients with heart failure, providing further evidence against any peripheral chemoreflex potentiation. The peripheral and central chemoreflexes have powerful effects on sympathetic activity in both health and disease and may contribute importantly to disease pathophysiology, particularly in conditions such as hypertension, obstructive sleep apnoea and heart failure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Blood Pressure / physiology
  • Carotid Body / physiopathology
  • Chemoreceptor Cells / physiopathology*
  • Electrocardiography
  • Heart Failure / physiopathology*
  • Heart Rate / physiology
  • Humans
  • Hypercapnia / physiopathology
  • Hypertension / physiopathology*
  • Hypoxia / physiopathology
  • Muscles / physiology
  • Oxygen / physiology
  • Reflex / physiology
  • Sleep Apnea, Obstructive / physiopathology*
  • Sympathetic Nervous System / physiopathology*

Substances

  • Oxygen