Purpose: To study voltage-dependent calcium currents (VDCCs) on hippocampal heterotopic neurons by using whole-cell patch-clamp techniques in brain slices prepared from methylaxozymethanol (MAM)-exposed rats.
Methods: Whole-cell voltage-clamp recordings were obtained from visually identified neurons in acute brain slices by using an infrared differential interference contrast (IR-DIC) video microscopy system. Heterotopic neurons were compared with normotopic pyramidal cells in hippocampal slices from MAM-exposed rats or CA1 pyramidal neurons in slices from controls.
Results: Heterotopic neurons expressed a prominent VDCC, which exhibited a peak current maximum around -30 mV (holding potential, -60 mV) and an inactivation time constant of 48.2 +/- 2.4 ms (n = 91). VDCC peak current and inactivation time constants were similar for normotopic (n = 92) and CA1 pyramidal cells (n = 40). Pharmacologic analysis of VDCC, on heterotopic, normotopic, and CA1 pyramidal cells, revealed an approximately 70% blockade of peak Ca2+ current with nifedipine and amiloride (L- and T-type channel blockers, respectively). Inhibition of VDCC, for all three cell types, also was similar when more specific Ca2+ channel antagonists were used [e.g., omega-conotoxin GVIA (N-type), omega-agatoxin KT (P/Q-type), and sFTX-3.3 (P-type)]. VDCC modulation by norepinephrine (NE) or adrenergic receptor-specific agonists [clonidine (alpha2), isoproterenol (beta), and phenylephrine (alpha1)] was similar for heterotopic and CA1 pyramidal cells.
Conclusions: Heterotopic neurons do not appear to exhibit Ca2+ channel abnormalities that could contribute to the reported hyperexcitability associated with MAM-exposed rats.