The hepatitis C virus nonstructural 5A (NS5A) protein is a pleiotropic phosphoprotein that has been shown to associate with a wide variety of cellular signaling proteins. Of particular interest is the observation that a highly conserved C-terminal Class II polyproline motif within NS5A mediated association with the Src homology 3 domains of members of the Src family of tyrosine kinases and the mitogenic adaptor protein Grb2 (A. Macdonald, K. Crowder, A. Street, C. McCormick, and M. Harris, submitted for publication). In this study, we analyzed the consequences of NS5A expression on mitogenic signaling pathways within a variety of cell lines. Utilizing a transient luciferase reporter system, we observed that NS5A inhibited the activity of the mitogenic and stress-activated transcription factor activating protein-1 (AP1). This inhibition was dependent upon a Class II polyproline motif within NS5A. Using a combination of dominant active and negative mutants of components of the MAPK signaling pathways, selective inhibitors, together with immunoblotting with phospho-specific and phosphorylation-independent antibodies, we determined the signaling pathways targeted by NS5A to inhibit AP1. These studies demonstrated that in both stable NS5A-expressing cells and Huh-7-derived cells harboring subgenomic hepatitis C virus (HCV) replicons, this inhibition was mediated through the ERK signaling pathway. Importantly, a comparable inhibition of AP1 reporter activity was observed in hepatocyte-derived cell lines transduced with a baculovirus vector driving expression of full-length HCV polyprotein. In conclusion, these data strongly suggest a role for the NS5A protein in the perturbation of mitogenic signaling pathways in HCV-infected hepatocytes.