We recorded, with the microneurography technique, single-unit impulses from nine cutaneous mechanoreceptive afferents with conduction velocities in the C range and receptive fields in the hairy skin of the forearm. The units responded with high impulse rates to light touch and had low monofilament thresholds. The geography of receptive fields was explored with a scanning method: a lightweight probe with a small and rounded tip was made to scan the field area in a series of closely adjacent tracks while single-unit activity was recorded. The fields of the nine units varied considerably in size as well as complexity. The individual field consisted of one to nine small responsive spots distributed over an area of 1-35 mm(2) when explored with a moving indentation of 5 mN. The fields were roughly round or oval in shape with no preferred orientation. The size of the response differed between individual sensitive spots in a field, suggesting a highly nonuniform terminal organization. The properties of the fields seem consistent with a role of tactile C afferents to provide information about pleasant touch and skin-to-skin contacts to central structures controlling emotions and affiliative behavior.