The aim of this study was to determine the role of maternally derived antibodies (MDA) against an influenza H1N1 virus in the clinical protection of piglets and especially their effect on the development of the active immunity after an infection with a homologous influenza H1N1 virus. Twenty piglets with MDA and 10 piglets without MDA were housed together and inoculated twice with influenza H1N1 virus, at 7 and 15 weeks of age. Nine piglets without MDA were added to these groups at 12 weeks of age to be inoculated at 15 weeks of age only. Clinical signs, body temperature, growth performance, virus excretion, antibody responses, and influenza-specific T-cell response were monitored. It was shown that MDA protect piglets against the clinical consequences of a primary influenza infection, but that this protection is not complete. A short but significant rise in body temperature was observed and growth seemed to be inhibited due to the infection. Piglets with MDA shed virus for a longer period after an infection than piglets without MDA. Piglets with and without MDA were protected against the clinical consequences of a secondary infection. However, both after primary and secondary infection significant differences in immune responses were observed that indicated that pigs with MDA developed a weaker immunity than pigs without MDA. Furthermore, overall growth performances from weaning to slaughter show a trend in favour of pigs without maternal antibodies, compared to pigs with maternal antibodies, mainly caused by a significant better performance in the second half of the finishing period. The results of this study provide us insight in the role of MDA in clinical protection and their influence on active immunity after an influenza virus infection of pigs. Furthermore, it leads us to the discussion about the profitability of massive sow herd vaccinations in an attempt to increase MDA levels in piglets, taking into account the overall performance of these piglets and the possible effects on antigenic drift.