Objective: To determine whether hydralazine might decrease DNA methyltransferase (DNMT) expression and induce autoimmunity by inhibiting extracellular signal-regulated kinase (ERK) pathway signaling.
Methods: The effect of hydralazine on DNMT was tested in vitro using enzyme inhibition studies, and in vivo by measuring messenger RNA (mRNA) levels and enzyme activity. Effects on ERK, c-Jun N-terminal kinase, and p38 pathway signaling were tested using immunoblotting. Murine T cells treated with hydralazine or an ERK pathway inhibitor were injected into mice and anti-DNA antibodies were measured by enzyme-linked immunosorbent assay.
Results: In vitro, hydralazine did not inhibit DNMT activity. Instead, hydralazine inhibited ERK pathway signaling, thereby decreasing DNMT1 and DNMT3a mRNA expression and DNMT enzyme activity similar to mitogen-activated protein kinase kinase (MEK) inhibitors. Inhibiting T cell ERK pathway signaling with an MEK inhibitor was sufficient to induce anti-double-stranded DNA antibodies in a murine model of drug-induced lupus, similar to the effect of hydralazine.
Conclusion: Hydralazine reproduces the lupus ERK pathway signaling abnormality and its effects on DNMT expression, and inhibiting this pathway induces autoimmunity. Hydralazine-induced lupus could be caused in part by inducing the same ERK pathway signaling defect that occurs in idiopathic lupus.