In cardiac myocytes, stimulation of alpha(1)-adrenoceptor (AR) leads to a hypertrophic phenotype. The G(h) protein (transglutaminase II, TGII) is tissue type transglutaminase and transmits the alpha(1B)-adrenoceptor signal with GTPase activity. Recently, it has been shown that the calreticulin (CRT) down-regulates both GTP binding and transglutaminase activities of TGII. To elucidate whether G(h) mediates norepinephrine-stimulated intracellular signal transductions leading to activation of extracellular signal-regulated kinases (ERKs) and neonatal rat cardiomyocyte hypertrophy, we examined the effects of G(h) on the activation of ERKs and inhibitory effects of CRT on alpha(1)-adrenoceptor/G(h) signaling. In neonatal rat cardiomyocytes, norepinephrine-induced ERKs activation was inhibited by an alpha(1)-adrenoceptor blocker (prazosin), but not by an beta-adrenoceptor blocker (propranolol). Overexpression of the G(h) protein stimulated norepinephrine-induced ERKs activation, which was inhibited by alpha-adrenoceptor blocker (prazosin). Co-overexpression of G(h) and CRT abolished norepinephrine-induced ERKs activation. Taken together, norepinephrine induces hypertrophy in neonatal rat cardiomyocytes through alpha(1)-AR stimulation and G(h) is partly involved in norepinephrine-induced MEK1,2/ERKs activation. Activation of G(h)-mediated MEK1,2/ERKs was completely inhibited by CRT.