Root respiration may account for as much as 60% of total soil respiration. Therefore, factors that regulate the metabolic activity of roots and associated microbes are an important component of terrestrial carbon budgets. Root systems are often sampled by diameter and depth classes to enable researchers to process samples in a systematic and timely fashion. We recently discovered that small, lateral roots at the distal end of the root system have much greater tissue N concentrations than larger roots, and this led to the hypothesis that the smallest roots have significantly higher rates of respiration than larger roots. This study was designed to determine if root respiration is related to root diameter or the location of roots in the soil profile. We examined relationships among root respiration rates and N concentration in four diameter classes from three soil depths in two sugar maple (Acer saccharum Marsh.) forests in Michigan. Root respiration declined as root diameter increased and was lower at deeper soil depths than at the soil surface. Surface roots (0-10 cm depth) respired at rates up to 40% greater than deeper roots, and respiration rates for roots < 0.5 mm in diameter were 2.4 to 3.4 times higher than those for roots in larger diameter classes. Root N concentration explained 70% of the observed variation in respiration across sites and size and depth classes. Differences in respiration among root diameter classes and soil depths appeared to be consistent with hypothesized effects of variation in root function on metabolic activity. Among roots, very fine roots in zones of high nutrient availability had the highest respiration rates. Large roots and roots from depths of low nutrient availability had low respiration rates consistent with structural and transport functions rather than with active nutrient uptake and assimilation. These results suggest that broadly defined root classes, e.g., fine roots are equivalent to all roots < 2.0 mm in diameter, do not accurately reflect the functional categories typically associated with fine roots. Tissue N concentration or N content (mass x concentration N) may be a better indicator of root function than root diameter.