Crosstalk between voltage-independent Ca2+ channels and L-type Ca2+ channels in A7r5 vascular smooth muscle cells at elevated intracellular pH: evidence for functional coupling between L-type Ca2+ channels and a 2-APB-sensitive cation channel

Circ Res. 2003 May 2;92(8):888-96. doi: 10.1161/01.RES.0000069216.80612.66. Epub 2003 Mar 27.

Abstract

This study was designed to investigate the role of voltage-independent and voltage-dependent Ca2+ channels in the Ca2+ signaling associated with intracellular alkalinization in A7r5 vascular smooth muscle cells. Extracellular administration of ammonium chloride (20 mmol/L) resulted in elevation of intracellular pH and activation of a sustained Ca2+ entry that was inhibited by 2-amino-ethoxydiphenyl borate (2-APB, 200 micromol/L) but not by verapamil (10 micro;mol/L). Alkalosis-induced Ca2+ entry was mediated by a voltage-independent cation conductance that allowed permeation of Ca2+ (PCa/PNa approximately 6), and was associated with inhibition of L-type Ca2+ currents. Alkalosis-induced inhibition of L-type Ca2+ currents was dependent on the presence of extracellular Ca2+ and was prevented by expression of a dominant-negative mutant of calmodulin. In the absence of extracellular Ca2+, with Ba2+ or Na+ as charge carrier, intracellular alkalosis failed to inhibit but potentiated L-type Ca2+ channel currents. Inhibition of Ca2+ currents through voltage-independent cation channels by 2-APB prevented alkalosis-induced inhibition of L-type Ca2+ currents. Similarly, 2-APB prevented vasopressin-induced activation of nonselective cation channels and inhibition of L-type Ca2+ currents. We suggest the existence of a pH-controlled Ca2+ entry pathway that governs the activity of smooth muscle L-type Ca2+ channels due to control of Ca2+/calmodulin-dependent negative feedback regulation. This Ca2+ entry pathway exhibits striking similarity with the pathway activated by stimulation of phospholipase-C-coupled receptors, and may involve a similar type of cation channel. We demonstrate for the first time the tight functional coupling between these voltage-independent Ca2+ channels and classical voltage-gated L-type Ca2+ channels.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonium Chloride / pharmacology
  • Animals
  • Arginine Vasopressin / pharmacology
  • Barium / pharmacology
  • Boron Compounds / pharmacology
  • Calcium / metabolism
  • Calcium / pharmacology
  • Calcium Channels / physiology*
  • Calcium Channels, L-Type / physiology*
  • Calmodulin / genetics
  • Calmodulin / metabolism
  • Cell Line
  • Humans
  • Hydrogen-Ion Concentration
  • Membrane Potentials / drug effects
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / physiology*
  • Time Factors

Substances

  • Boron Compounds
  • Calcium Channels
  • Calcium Channels, L-Type
  • Calmodulin
  • Ammonium Chloride
  • Arginine Vasopressin
  • Barium
  • 2-aminoethoxydiphenyl borate
  • Calcium