Unilateral ureteral obstruction (UUO) is an animal model of accelerated renal tubulointerstitial fibrosis. We have recently shown, using this model, that mice lacking the bradykinin B2-receptor (B2(-/-)) were more susceptible than control animals to the development of tubulointerstitial fibrosis. Angiotensin converting enzyme (ACE) inhibition slows down UUO-induced renal fibrosis. Since ACE-inhibition increases bradykinin and decreases angiotensin II concentrations we have verified if bradykinin is involved in the antifibrotic effects of ACE-inhibition using the UUO-model and B2(-/-) mice. Surprisingly, although ACE-inhibition significantly reduced renal fibrosis, no difference was observed between the degree of tubulointerstitial fibrosis, macrophage infiltration and cell proliferation between ACE-inhibitor treated B2(+/+) and B2(-/-) mice suggesting the absence of a role of the B2-receptor in the antifibrotic effects of ACE-inhibition. This was confirmed at the level of bradykinin-induced activity of enzymes involved in the degradation of the extracellular matrix. However in both mouse strains, ACE-inhibitors were more efficient than AT1 receptor antagonists.