Purpose: The expression of folate receptor (FR) is amplified in many types of human cancers. Previously, FR-targeted liposomal doxorubicin (f-L-DOX) has been shown to exhibit superior and selective cytotoxicity against FR(+) tumor cells in vitro compared to nontargeted liposomal doxorubicin (L-DOX). This study further investigates f-L-DOX for its antitumor efficacy in vivo using a murine tumor xenograft model.
Methods: F-L-DOX composed of DSPC/cholesterol/PEG-DSPE/ folate-PEG-DSPE (65:31:3.5:0.5, mole/mole) was prepared by polycarbonate membrane extrusion followed by remote loading of DOX. Athymic mice on a folate-free diet were engrafted with FR(+) KB cells. Two weeks later, these mice were treated with f-L-DOX, L-DOX, or free DOX in a series of six injections (given intraperitoneally on every fourth day at 10 mg/kg DOX) and monitored for tumor growth and animal survival. The plasma clearance profiles of the DOX formulations and the effect of dietary folate on plasma folate concentration were also analyzed.
Results: Plasma folate level remained in the physiologic range relative to that in humans. F-L-DOX exhibited an extended systemic circulation time similar to that of L-DOX. Mice that received f-L-DOX showed greater tumor growth inhibition and a 31% higher (p < 0.01) increase in lifespan compared to those that received L-DOX. Meanwhile, free DOX given at the same dose resulted in significant toxicity and was less effective in prolonging animal survival.
Conclusions: FR-targeted liposomes are a highly efficacious vehicle for in vivo delivery of anticancer agents and have potential application in the treatment of FR(+) solid tumors.