There is considerable interindividual variation in man's ability to metabolize drugs and foreign compounds. These differences can partly be attributed to genetic polymorphisms that result in the generation of multiple phenotypes with different drug-metabolizing capabilities. Genetically derived differences can easily be assessed by genotyping assays in cases where the polymorphism has been identified. However, many of the polymorphisms that result in these are not known, secondly not all the differences can be attributed to genetic polymorphisms, hence genotyping methods cannot be employed. We have therefore, developed real-time (Taqman) PCR assays to quantitate levels of P450 mRNAs in human tissues. These assays are highly sensitive, reproducible, and specific and will allow quantitation of P450 mRNA levels in various human tissues. We have applied these assays to quantitate cytochrome P450 mRNA levels in human skin samples from 27 healthy volunteers. The expression of 13 P450s was assessed. The major enzymes detected were CYP1B1, CYP2B6, CYP2D6, and CYP3A4 with mean values of 2.5, 2.6, 2.7, and 1.1 fg/18S rRNA in 50ng total RNA, respectively. Lower levels of CYP2C18, CYP2C19, and CYP3A5 were also detected while CYP1A2, 2A6, and 2C8 were below limits of detection. There was interindividual variation in the levels of mRNA among the 27 subjects studied although Poisson analysis showed data to be normally distributed, except for CYP2B6, as some individuals completely lacked CYP2B6 mRNA.