cAMP-induced changes of apical membrane potentials of confluent H441 monolayers

Am J Physiol Lung Cell Mol Physiol. 2003 Aug;285(2):L443-50. doi: 10.1152/ajplung.00412.2002. Epub 2003 Apr 18.

Abstract

We recorded apical membrane potentials (Va) of H441 cells [a human lung cell line exhibiting both epithelial Na+ (ENaC) and CFTR-type channels] grown as confluent monolayers, using the microelectrode technique in current-clamp mode before, during, and after perfusion of the apical membranes with 10 microM forskolin. When perfused with normal Ringer solution, the cells had a Va of -43 +/- 10 mV (means +/- SD; n = 31). Perfusion with forskolin resulted in sustained depolarization by 25.0 +/- 3.5 mV (means +/- SD; n = 23) and increased the number, open time, and the open probability of a 4.2-pS ENaC. In contrast to a previous report (Jiang J, Song C, Koller BH, Matthay MA, and Verkman AS. Am J Physiol Cell Physiol 275: C1610-C1620, 1998), no transient hyperpolarization was observed. The forskolin-induced depolarization of Va was almost totally prevented by pretreatment of monolayers with 10 microM amiloride or by substitution of Na+ ions in the bath solution with N-methyl-d-glucamine. These findings indicate that cAMP stimulation of Na+ influx across H441 confluent monolayers results from activation of an amiloride-sensitive apical Na+ conductance and not from Va hyperpolarization due to Cl- influx through CFTR-type channels.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amiloride / pharmacology
  • Cell Culture Techniques / methods
  • Cell Line
  • Cell Membrane / drug effects
  • Cell Membrane / physiology*
  • Chlorides / pharmacology
  • Colforsin / pharmacology
  • Cyclic AMP / pharmacology*
  • Cystic Fibrosis Transmembrane Conductance Regulator / drug effects
  • Cystic Fibrosis Transmembrane Conductance Regulator / physiology
  • Epithelial Sodium Channels
  • Glyburide / pharmacology
  • Humans
  • Kinetics
  • Lung / drug effects
  • Lung / physiology
  • Membrane Potentials / drug effects*
  • Patch-Clamp Techniques
  • Respiratory Mucosa / drug effects
  • Respiratory Mucosa / physiology
  • Sodium Channels / drug effects
  • Sodium Channels / physiology

Substances

  • CFTR protein, human
  • Chlorides
  • Epithelial Sodium Channels
  • Sodium Channels
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Colforsin
  • Amiloride
  • Cyclic AMP
  • Glyburide