To broaden the applicability of adoptive cellular immunotherapy against HER-2/neu overexpressing human cancers, we constructed a chimeric scFv/gamma gene composed of the variable regions of a HER-2/neu specific monoclonal antibody (mAb) joined to the signaling gamma-chain of the Fc(epsilon)RI receptor. The scFv(anti-HER-2/neu)/gamma chimeric gene was successfully expressed as functional surface receptor in the MD.45 cytolytic T-cell (CTL) hybridoma (MD.45-HER/gamma). Expression of the chimeric protein triggered IL-2 and IFN-gamma secretion in vitro upon encountering cell surface HER-2/neu and mediated non-major-histocompatibility-complex (MHC)-restricted HER-2/neu-specific target cell lysis. We also examined the in vivo activity of the MD.45-HER/gamma transduced cells. Severe combined immunodeficiency disease (SCID) mice that were given HER-2/neu positive (+) human tumor cell lines had significantly increased survival compared to mice treated with saline only, or with MD.45 cells transduced with a control anti-trinitrophenyl (anti-TNP) chimeric receptor gene (MD.45-TNP/gamma). These results demonstrate the feasibility of redirecting MD.45 CTL to react in vitro and in vivo with a variety of HER-2/neu(+) tumor cells by our gene transduction protocol. Moreover, they open the possibility of using the same chimeric gene for transducing primary lymphocytes and thus allowing adoptive immunotherapy against HER-2/neu(+) cancers.