Background: Medication treatment algorithms may improve clinical outcomes, uniformity of treatment, quality of care, and efficiency. However, such benefits have never been evaluated for patients with severe, persistent mental illnesses. This study compared clinical and economic outcomes of an algorithm-driven disease management program (ALGO) with treatment-as-usual (TAU) for adults with DSM-IV schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) treated in public mental health outpatient clinics in Texas.
Discussion: The disorder-specific intervention ALGO included a consensually derived and feasibility-tested medication algorithm, a patient/family educational program, ongoing physician training and consultation, a uniform medical documentation system with routine assessment of symptoms and side effects at each clinic visit to guide ALGO implementation, and prompting by on-site clinical coordinators. A total of 19 clinics from 7 local authorities were matched by authority and urban status, such that 4 clinics each offered ALGO for only 1 disorder (SCZ, BD, or MDD). The remaining 7 TAU clinics offered no ALGO and thus served as controls (TAUnonALGO). To determine if ALGO for one disorder impacted care for another disorder within the same clinic ("culture effect"), additional TAU subjects were selected from 4 of the ALGO clinics offering ALGO for another disorder (TAUinALGO). Patient entry occurred over 13 months, beginning March 1998 and concluding with the final active patient visit in April 2000. Research outcomes assessed at baseline and periodically for at least 1 year included (1) symptoms, (2) functioning, (3) cognitive functioning (for SCZ), (4) medication side effects, (5) patient satisfaction, (6) physician satisfaction, (7) quality of life, (8) frequency of contacts with criminal justice and state welfare system, (9) mental health and medical service utilization and cost, and (10) alcohol and substance abuse and supplemental substance use information. Analyses were based on hierarchical linear models designed to test for initial changes and growth in differences between ALGO and TAU patients over time in this matched clinic design.