The BCR-ABL fusion in chronic myeloid leukaemia (CML) is generated by the Philadelphia (Ph) translocation t(9;22) or, in 10% of patients, variants thereof (vPh). Deletion encompassing the reciprocal product (ABL-BCR) from the derivative chromosome 9 [der(9)] occurs in 15% of all patients, but with greater frequency in vPh patients. Reports of physical separation of ABL-BCR in non-deleted patients, as well as evolution from classical to variant Ph, introduce further heterogeneity to the vPh subgroup and raise the possibility that such translocations may herald disease progression. Survival analyses, however, have thus far yielded contradictory results. We assessed the frequency of der(9) deletions, ABL-BCR abrogation, cytogenetic evolution and cryptic rearrangement in a large cohort of 54 patients with vPh CML. Deletions encompassing ABL-BCR were detected in 37% of patients, consistent with a model in which a greater number of chromosome breaks increases the risk of genomic loss. The components of ABL-BCR were physically separated in a further 52% of patients while fused in the remaining 11%. Evolution from classical to vPh was demonstrated in three patients. The difference in survival, as indicated by Kaplan-Meier analysis, was marked between classical and vPh patients (105 vs 60 months respectively; P = 0.0002). Importantly, this difference disappeared when patients with deletions were removed from the analysis. Our study showed that, despite the existence of several levels of genomic heterogeneity in variant Ph-positive CML, der(9) deletion status is the key prognostic factor.