Introduction: Proinflammatory cytokines play an important role in the development of type 1 diabetes. Lisofylline (LSF) is a novel anti-inflammatory compound that specifically inhibits proinflammatory cytokine production and action.
Aim: To investigate the effect of LSF on diabetes prevention.
Methodology: A mouse with diabetes induced by multiple low doses of streptozotocin (STZ) can be used as an animal model for type 1 diabetes. In this study, we used this method to induce diabetes in C57BL/6J mice. The daily LSF treatment started 5 days before STZ injections and lasted for 2 weeks. The incidence of diabetes was monitored. Insulin secretion was assessed in pancreatic islets isolated from experimental mice. Cytokine production was measured in mouse sera. Islet apoptosis was assessed quantitatively.
Results: In LSF-treated mice, there was a significant reduction of diabetes incidence (25% vs. 91.6%). This protection was associated with suppression of systemic levels of IFN-gamma and TNF-alpha, inhibition of macrophage infiltration in islets, restoration of islet insulin secretion, and reduction of beta-cell apoptosis.
Conclusions: This study suggests that treatment with LSF suppresses proinflammatory cytokines and protects beta-cells from inflammation. LSF may be useful for prevention of type 1 diabetes and other disorders associated with excessive proinflammatory cytokines.