Ubiquitin is a ubiquitously expressed 76 amino acid protein that can be covalently attached to target proteins, leading to their ubiquitination. Many ubiquitinated proteins are degraded by the proteasome, a 2000 kDa ATP-dependent proteolytic complex. Numerous studies have demonstrated that the ubiquitination and proteasome system plays an important role in controlling the levels of various cellular proteins and therefore regulates basic cellular processes such as cell cycle progression, signal transduction, and cell transformation. Ubiquitination also directly affects the function and location of target proteins. Recent studies found that ubiquitination-mediated degradation and change in activity regulate many molecules of the cell death machinery, such as p53, caspases, and Bcl-2 family members. Ring finger-containing members of the IAP (inhibitor of apoptosis) family proteins themselves can function as ubiquitin protein ligases to ubiquitinate their target proteins or promote autoubiquitination. It has been demonstrated that degradation of the IAP proteins is required for apoptosis to occur in some systems, indicating apoptosis proceeds by activating death pathways as well as eliminating "roadblocks" through ubiquitination. These new findings also suggest that ubiquitination is one of the major mechanisms that regulate apoptotic cell death and could be a unique target for therapeutic intervention.