Methylation-induced G(2)/M arrest requires a full complement of the mismatch repair protein hMLH1

EMBO J. 2003 May 1;22(9):2245-54. doi: 10.1093/emboj/cdg216.

Abstract

The mismatch repair (MMR) gene hMLH1 is mutated in approximately 50% of hereditary non-polyposis colon cancers and transcriptionally silenced in approximately 25% of sporadic tumours of the right colon. Cells lacking hMLH1 display microsatellite instability and resistance to killing by methylating agents. In an attempt to study the phenotypic effects of hMLH1 downregulation in greater detail, we designed an isogenic system, in which hMLH1 expression is regulated by doxycycline. We now report that human embryonic kidney 293T cells expressing high amounts of hMLH1 were MMR-proficient and arrested at the G(2)/M cell cycle checkpoint following treatment with the DNA methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while cells not expressing hMLH1 displayed a MMR defect and failed to arrest upon MNNG treatment. Interestingly, MMR proficiency was restored even at low hMLH1 concentrations, while checkpoint activation required a full complement of hMLH1. In the MMR-proficient cells, activation of the MNNG-induced G(2)/M checkpoint was accompanied by phosphorylation of p53, but the cell death pathway was p53 independent, as the latter polypeptide is functionally inactivated in these cells by SV40 large T antigen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Alkylating Agents / pharmacology
  • Base Pair Mismatch
  • Carrier Proteins
  • Cell Line
  • DNA Methylation*
  • DNA Repair
  • G2 Phase*
  • Humans
  • Methylnitronitrosoguanidine / pharmacology
  • Mitosis*
  • MutL Protein Homolog 1
  • Neoplasm Proteins / metabolism*
  • Nuclear Proteins

Substances

  • Adaptor Proteins, Signal Transducing
  • Alkylating Agents
  • Carrier Proteins
  • MLH1 protein, human
  • Neoplasm Proteins
  • Nuclear Proteins
  • Methylnitronitrosoguanidine
  • MutL Protein Homolog 1