Background and purpose: Progenitor cells continue to generate neurons in the adult mammalian brain, and cerebral ischemia induces neurogenesis. We examined the efficacy of the intraventricular injection of a recombinant adenovirus-expressing fibroblast growth factor-2 (FGF-2) (AxCAMAssbFGF) on neurogenesis in both normal and ischemic brains.
Methods: We used a gerbil model of transient global ischemia and counted the number of BrdU-positive cells after injection of AxCAMAssbFGF into the brain with or without ischemia.
Results: Intraventricular AxCAMAssbFGF produced robust FGF-2 protein increases in diverse regions of the brain and markedly increased FGF-2 concentrations in cerebrospinal fluid 2 days after administration and evoked significant proliferation of BrdU-positive cells not only in the subventricular zone and dentate gyrus of the hippocampus but also in the cerebral cortex, and some BrdU-positive cells differentiated into neurons. Continuous intraventricular infusion of FGF-2 protein increased FGF-2 concentration in cerebrospinal fluid but not in brain tissues and produced BrdU-positive cell proliferation only in the subventricular zone of the lateral ventricle.
Conclusions: Adenovirally mediated transfer of the FGF-2 gene promoted progenitor cell proliferation more efficiently in widespread regions of the brain after transient global ischemia than continuous intraventricular infusion of FGF-2 protein.