Purpose: Fibroblast growth factor receptor 3 (FGFR3) mutations were recently found at a high frequency in well-differentiated urothelial cell carcinoma (UCC). We investigated the relationship between FGFR3 status and three molecular markers (MIB-1, P53, and P27kip1) associated with worse prognosis and determined the reproducibility of pathologic grade and molecular variables.
Patients and methods: In this multicenter study, we included 286 patients with primary (first diagnosis) UCC. The histologic slides were reviewed. FGFR3 status was examined by polymerase chain reaction-single strand conformation polymorphism and sequencing. Expression levels of MIB-1, P53, and P27kip1 were determined by immunohistochemistry. Mean follow-up was 5.5 years (range, 0.4 to 18.4 years).
Results: FGFR3 mutations were detected in 172 (60%) of 286 UCCs. Grade 1 tumors had an FGFR3 mutation in 88% of patient samples and grade 3 tumors in 16% of patient samples. Conversely, aberrant expression patterns of MIB-1, P53, and P27kip1 were seen in 5%, 2%, and 3% of grade 1 tumors and in 85%, 60%, and 56% of grade 3 tumors, respectively. In multivariate analysis with recurrence rate, progression, and disease-specific survival as end points, the combination of FGFR3 and MIB-1 proved independently significant in all three cases. By using these two molecular markers, three molecular grades (mGs) could be identified: mG1 (mutation; normal expression), favorable prognosis; mG2 (two remaining combinations), intermediate prognosis; and mG3 (no mutation; high expression), poor prognosis. The molecular variables were more reproducible than pathologic grade (85% to 100% v 47% to 61%).
Conclusion: The FGFR3 mutation represents the favorable molecular pathway of UCC. Molecular grading provides a new, simple, and highly reproducible tool for clinical decision making in UCC patients.