Control of the worldwide AIDS pandemic may require not only preventive but also therapeutic immunization strategies. To meet this challenge, the next generation of human immunodeficiency virus type 1 (HIV-1) vaccines must stimulate broad and durable cellular immune responses to multiple HIV antigens. Results of both natural history studies and virus challenge studies with macaques indicate that responses to both Gag and Pol antigens are important for the control of viremia. Previously, we reported increased Rev-independent expression and improved immunogenicity of DNA vaccines encoding sequence-modified Gag derived from the HIV-1(SF2) strain (J. zur Megede, M. C. Chen, B. Doe, M. Schaefer, C. E. Greer, M. Selby, G. R. Otten, and S. W. Barnett, J. Virol. 74: 2628-2635, 2000). Here we describe results of expression and immunogenicity studies conducted with novel sequence-modified HIV-1(SF2) GagPol and Pol vaccine antigens. These Pol antigens contain deletions in the integrase coding region and were mutated in the reverse transcriptase (RT) coding region to remove potentially deleterious enzymatic activities. The resulting Pol sequences were used alone or in combination with sequence-modified Gag. In the latter, the natural translational frameshift between the Gag and Pol coding sequences was either retained or removed. Smaller, in-frame fusion gene cassettes expressing Gag plus RT or protease plus RT also were evaluated. Expression of Gag and Pol from GagPol fusion gene cassettes appeared to be reduced when the HIV protease was active. Therefore, additional constructs were evaluated in which mutations were introduced to attenuate or inactivate the protease activity. Nevertheless, when these constructs were delivered to mice as DNA vaccines, similar levels of CD8(+) T-cell responses to Gag and Pol epitopes were observed regardless of the level of protease activity. Overall, the cellular immune responses against Gag induced in mice immunized with multigenic gagpol plasmids were similar to those observed in mice immunized with the plasmid encoding Gag alone. Furthermore, all of the sequence-modified pol and gagpol plasmids expressed high levels of Pol-specific antigens in a Rev-independent fashion and were able to induce potent Pol-specific T- and B-cell responses in mice. These results support the inclusion of a gagpol in-frame fusion gene in future HIV vaccine approaches.