Using DNA microarray and clustering of expressed genes we have analyzed the mechanism of inhibition of wild-type p53-induced apoptosis by the cytokine interleukin 6 (IL-6) and the calcium mobilizer thapsigargin (TG). Clustering analysis of 1,786 genes, the expression level of which changed after activation of wild-type p53 in the absence or presence of IL-6 or TG, showed that these compounds did not cause a general inhibition of the ability of p53 to up-regulate or down-regulate gene expression. Expression of various p53 targets implicated as mediators of p53-induced apoptosis was also not affected by IL-6 or TG. These compounds thus can bypass the effect of wild-type p53 on gene expression and inhibit apoptosis. IL-6 and TG activated different p53-independent pathways of gene expression that include up-regulation of antiapoptotic genes. IL-6 and TG also activated different differentiation-associated genes. The ability of compounds such as cytokines and calcium mobilizers to inhibit p53-mediated apoptosis without generally inhibiting gene expression regulated by p53 can facilitate tumor development and tumor resistance to radiation and chemotherapy in cells that retain wild-type p53.