A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rVV) vectors expressing relevant antigens has been shown to enhance specific cellular immune responses and to elicit protection against a variety of pathogens in animal models. In this paper, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a plasmid carrying the gene for the LACK antigen from Leishmania infantum (DNA-LACK) followed by a booster with a rVV containing the same gene (rVV-LACK). Thereafter, animals were challenged with L. infantum to induce visceral leishmaniasis (VL). In the vaccinated dogs as compared with the controls, the outcome of the infection after challenge with a high inoculum (10(8)) of L. infantum stationary promastigotes was assessed by tissue parasite load, specific anti-Leishmania antibody production, cytokine level and development of clinical signs of leishmaniasis. We observed a 60% protection against infection in dogs immunized by DNA-LACK prime/rVV/-LACK boost while two doses of DNA-LACK did not elicit protection against the disease. The interleukin 4 (IL-4), interferon gamma (IFNgamma) and IL-12 (p40 subunit) cytokine mRNA expression profiles in PBMC as well as lymphocyte proliferative response and the IgG2/IgG1 ratios specific for LACK suggest that in vaccinated animals there is triggering of cellular immune responses. This type of DNA/rVV prime/boost immunization approach may have utility against visceral leishmaniasis in dogs.