Traveling waves are analyzed in a model of the hantavirus infection in deer mice. The existence of two kinds of wave phenomena is predicted. An environmental parameter governs a transition between two regimes of propagation. In one of them the front of infection lags behind at a constant rate. In the other, fronts of susceptible and infected mice travel at the same speed, separated by a constant delay. The dependence of the delay on system parameters is analyzed numerically and through a piecewise linearization.