CSF-1 and MCP-1, released by dental follicle cells, stimulate the influx of monocytes into the follicle sac and enhance the formation of osteoclasts that, in turn, resorb alveolar bone for the eruption pathway. PDGF and bFGF, released by cells adjacent to the follicle or by activated monocytes, are prime candidates that may regulate CSF-1 and MCP-1 gene expression. The present study demonstrates that PDGF and bFGF are mitogens for dental follicle cells and stimulate CSF-1 and MCP-1 mRNA, but with different time course kinetics. Peak induction of CSF-1 mRNA was observed at 6-8h, while maximal MCP-1 induction was observed at 2h. These findings suggest that MCP-1 is an early chemotactic signal for monocytes and that subsequent release of CSF-1 may act synergistically with MCP-1 to enhance monocyte influx. Further understanding of the molecular mechanisms by which cytokines regulate CSF-1 and MCP-1 may lead to more effective treatment regimens for disorders associated with abnormal tooth eruption.