Programmed electrical stimulation (PES) is a crucial aspect of the evaluation of the risk of arrhythmias in cardiac patients and provides a powerful tool for understanding the mechanisms of arrhythmia in experimental models. Whereas PES in the mouse is well characterized, the procedures allowing for follow-up studies in the same animal have not been developed. In this report, we describe a novel subdiaphragmatic approach that allows for repeat electrophysiological studies in the mouse. Under inhaled anesthesia, PES was performed in 36 wild-type mice via a stimulating electrode introduced through an epigastric incision and placed directly into the diaphragmatic surface of the heart. The procedure was repeated 7 days later. Ventricular effective refractory periods (VERP) did not change significantly between the initial and follow-up trials. Chronic treatment with amiodarone, however, was associated with a 70% prolongation in VERP from initial to follow-up studies (P < or = 0.001). In addition, PES of a genetically modified strain with sudden cardiac death, the connexin43 conditional knockout mouse consistently induced lethal polymorphic ventricular tachycardia. Thus sequential PES in mice is feasible with the use of a subdiaphragmatic approach, yields reproducible VERP values, and can be used to follow pharmacologically induced changes in VERP and identify mice at risk of lethal ventricular arrhythmias.