Optimized coupling protocols are presented for the efficient and automated generation of carboxyfluorescein-labeled peptides. Side products, generated when applying earlier protocols for the in situ activation of carboxyfluorescein, were eliminated by a simple procedure, yielding highly pure fluorescent peptides and minimizing postsynthesis workup. For the cost-efficient labeling of large compound collections, coupling protocols were developed reducing the amount of coupling reagent and fluorophore. To enable further chemical derivatization of carboxyfluorescein-labeled peptides in solid-phase synthesis, the on-resin introduction of the trityl group was devised as a protecting group strategy for carboxyfluorescein. This protecting group strategy was exploited for the synthesis of peptides labeled with two different fluorescent dyes, essential tools for bioanalytical applications based on fluorescence resonance energy transfer (FRET). Tritylation and optimized labeling conditions led to the development of a fluorescein-preloaded resin for the automated synthesis of fluorescein-labeled compound collections with uniform labeling yields.