Dietary isothiocyanates (ITCs) are highly effective in affording protection against chemically induced cancers in laboratory animals. In the present study, we demonstrate that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits proliferation of cultured PC-3 (androgen-independent) and LNCaP (androgen-dependent) human prostate cancer cells in a dose-dependent manner with an IC(50) of approximately 15-17 micro M. On the other hand, survival of a normal prostate epithelial cell line (PrEC) was minimally affected by AITC even at concentrations that were highly cytotoxic to the prostate cancer cells. Reduced proliferation of PC-3 as well as LNCaP cells in the presence of AITC correlated with accumulation of cells in G(2)/M phase and induction of apoptosis. In contrast, AITC treatment failed to induce apoptosis or cause G(2)/M phase arrest in PrEC cells. A 24 h treatment of PC-3 and LNCaP cells with 20 micro M AITC caused a significant decrease in the levels of proteins that regulate G(2)/M progression, including Cdk1 (32-50% reduction), Cdc25B (44-48% reduction) and Cdc25C (>90% reduction). A significant reduction in the expression of cyclin B1 protein (approximately 45%) was observed only in LNCaP cells. A 24 h exposure of PC-3 and LNCaP cells to an apoptosis-inducing concentration of AITC (20 micro M) resulted in a significant decrease (31-68%) in the levels of anti-apoptotic protein Bcl-2 in both cell lines, and approximately 58% reduction in Bcl-X(L) protein expression in LNCaP cells. In conclusion, it seems reasonable to hypothesize that AITC, and possibly other ITCs, may find use in the treatment of human prostate cancers.