Among the different definitions of viruses, 'pirates of the cell' is one of the most picturesque, but also one of the most appropriate. Viruses have been known for a long time to utilize a variety of strategies to penetrate cells and, once inside, to take over the host nucleic acid and protein synthesis machinery to build up their own components and produce large amounts of viral progeny. As their genomes carry a minimal amount of information, encoding only a few structural and regulatory proteins, viruses are largely dependent on their hosts for survival; however, despite their apparent simplicity, viruses have evolved different replicative strategies that are regulated in a sophisticated manner. During the last years, the study of the elaborate relationship between viruses and their hosts has led to the understanding of how viral pathogens not only are able to alter the host metabolism via their signaling proteins, but are also able to hijack cellular signaling pathways and transcription factors, and control them to their own advantage. In particular, the nuclear factor-kappaB (NF-kappaB) pathway appears to be an attractive target for common human viral pathogens. This review summarizes what is known about the control of NF-kappaB by viruses, and discusses the possible outcome of NF-kappaB activation during viral infection, which may benefit either the host or the pathogen.