Atmospheric chemistry of nonanal

Environ Sci Technol. 2003 May 15;37(10):2218-25. doi: 10.1021/es026220p.

Abstract

During the Southern Oxidants Study 1999 field campaign at Dickson, TN, we conducted measurements of the n-aldehydes propanal, pentanal, hexanal, heptanal, octanal, and nonanal. Propanal and nonanal tended to have the largest concentrations, with afternoon maxima of approximately 0.3 ppb. These aldehydes typically represented a significant fraction of the VOC reactivity defined as k(OH)[VOC]. However, this information is misleading with regard to the impact of these aldehydes on ozone formation, as their oxidation can represent a significant NOx sink. Motivated by the relatively large nonanal concentrations, we conducted a laboratory study of the products of the nonanal + OH reaction. The OH + nonanal reaction rate constant was determined via the relative rate technique and found to be 3.6 (+/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). Under conditions of high [NO2]/[NO], we determined that 50 +/- 6% of OH-nonanal reaction occurs via abstraction of the aldehydic H-atom through measurement of the peroxynonanyl nitrate yield. We also studied the production of organic nitrates from OH reaction with nonanal in the presence of NO. As expected, a major product (20% at large [NO]/[NO2]) of this reaction was 1-nitrooxy octane. We calculate that the branching ratio for 1-nitrooxy octane formation from peroxyoctyl radicals is 0.40 +/- 0.05. On the basis of these measurements, we find that for more than 50% of the time OH reacts with nonanal (for midday summer conditions) an organic nitrate or PAN compound is formed, making this important atmospheric aldehyde an effective NOx sink.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants / analysis*
  • Aldehydes / analysis*
  • Atmosphere / chemistry*
  • Environmental Monitoring*
  • Nitrates / chemistry
  • Oxidation-Reduction
  • Tennessee

Substances

  • Air Pollutants
  • Aldehydes
  • Nitrates
  • nonanal