Is there synchronicity in nitrogen input and output fluxes at the Noland Divide Watershed, a small N-saturated forested catchment in the Great Smoky Mountains National Park?

ScientificWorldJournal. 2001 Nov 22:1 Suppl 2:480-92. doi: 10.1100/tsw.2001.384.

Abstract

High-elevation red spruce [Picea rubens Sarg.]-Fraser fir [Abies fraseri (Pursh.) Poir] forests in the Southern Appalachians currently receive large nitrogen (N) inputs via atmospheric deposition (30 kg N ha(-1) year(-1)) but have limited N retention capacity due to a combination of stand age, heavy fir mortality caused by exotic insect infestations, and numerous gaps caused by windfalls and ice storms. This study examined the magnitude and timing of the N fluxes into, through, and out of a small, first-order catchment in the Great Smoky Mountains National Park. It also examined the role of climatic conditions in causing interannual variations in the N output signal. About half of the atmospheric N input was exported annually in the streamwater, primarily as nitrate (NO3-N). While most incoming ammonium (NH4-N) was retained in the canopy and the forest floor, the NO3-N fluxes were very dynamic in space as well as in time. There was a clear decoupling between NO3-N input and output fluxes. Atmospheric N input was greatest in the growing season while largest NO3-N losses typically occurred in the dormant season. Also, as water passed through the various catchment compartments, the NO3-N flux declined below the canopy, increased in the upper soil due to internal N mineralization and nitrification, and declined again deeper in the mineral soil due to plant uptake and microbial processing. Temperature control on N production and hydrologic control on NO3-N leaching during the growing season likely caused the observed inter-annual variation in fall peak NO3-N concentrations and N discharge rates in the stream.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Altitude
  • Ammonia / analysis
  • Ecosystem*
  • Fresh Water / chemistry*
  • Geography
  • Nitrates / analysis
  • Nitrogen / analysis*
  • Nitrogen / metabolism
  • North Carolina
  • Seasons
  • Soil / analysis
  • Temperature
  • Tennessee
  • Trees* / chemistry
  • Trees* / metabolism

Substances

  • Nitrates
  • Soil
  • Ammonia
  • Nitrogen