Coexistence of sexual and asexual reproduction within the same individual is an intriguing problem, especially when it concerns homothallic haplonts, like the fungus Aspergillus nidulans. In this fungus asexual and sexual offspring have largely identical genotypes. This genetic model organism is an ideal tool to measure possible fitness effects of sex (compared to asex) resulting from causes other than recombination. In this article we show that slightly deleterious mutations accumulate at a lower rate in the sexual pathway than in the asexual pathway. This secondary sex advantage may contribute to the persistence of sexual spores in this fungus. We propose that this advantage results from intra-organismal selection of the fittest gametes or zygotes, which is more stringent in the costly sexual pathway.