Dendritic cells (DCs) are potent antigen-presenting cells for the induction and activation of cytotoxic T lymphocytes. We tested whether bone marrow-derived DCs are capable of inducing protective immunity against a murine lymphoma (A20). DCs were grown from tumor-bearing BALB/c mice by culturing bone marrow cells. BALB/c mice were injected (sc) with A20 cells on day 0. Intraperitoneal immunization with DCs mixed with lethally irradiated A20 cells were started when the tumor reached ca. 4-5 mm in diameter (Group A) or on day -7 (Group B). Booster immunizations were given every 3-4 days for four weeks. By 31 days in group A, there was a significant reduction in tumor growth in the mice immunized with DCs mixed with irradiated A20 cells as compared with the control groups (p=0.016). In group B, tumor growth was completely inhibited and there was no tumor growth following extended observations after completion of immunization. Thus, DCs mixed with irradiated tumor cells can induce an antitumor effect. This provides a rationale for the use of DCs mixed with irradiated tumor cells in immunotherapy for minimal residual disease of lymphomas.