Application of ultraviolet light (UV-) irradiation to a photocrosslinkable chitosan (Az-CH-LA) aqueous solution including fibroblast growth factor-2 (FGF-2) resulted within 30s in an insoluble, flexible hydrogel. About 20% of the FGF-2molecules were released from the FGF-2-incorporated chitosan hydrogel into phosphate buffered saline (PBS) within 1 day, after which no further significant release occurred under in vitro non-degradation conditions of the hydrogel. The FGF-2molecules retained in the chitosan hydrogel remained biologically active, and were released from the chitosan hydrogel upon the in vivo biodegradation of the hydrogel. In order to evaluate its accelerating effect on wound healing, full thickness skin incisions were made on the back of healing-impaired diabetic (db/db) mice and their normal (db/+) littermates. Application of the chitosan hydrogel significantly induced wound contraction and accelerated wound closure in both db/db and db/+ mice. However, the addition of FGF-2 in the chitosan hydrogel further accelerated wound closure in db/db mice, although not in db/+ mice. Histological examination also has demonstrated an advanced granulation tissue formation, capillary formation and epithelialization in wounds treated with FGF-2-incorporated chitosan hydrogels in db/db mice.