Neurotrophin-3 is expressed in a discrete subset of olfactory receptor neurons in the mouse

J Comp Neurol. 2003 Aug 18;463(2):221-35. doi: 10.1002/cne.10752.

Abstract

In transgenic neurotrophin-3 lacZ-neo (NT-3(lacZneo)) mice, in which the coding region for NT-3 is replaced by Eschericia coli lacZ, the expression of beta-galactosidase faithfully mimics the expression of NT-3 (Vigers AJ, Baquet ZC, Jones KR [2000], J Comp Neurol 416:398-416). During embryonic and early postnatal development, beta-galactosidase is detected in the olfactory system, beginning at embryonic day 11.5 in the nasal epithelium and at embryonic day 16.5 in the olfactory bulb. Levels of beta-galactosidase rise with age, reaching a peak during the second postnatal week, when beta-galactosidase reactivity is visible in up to 50% of the glomeruli. As the animal matures, the beta-galactosidase levels decline, but staining remains present in axons and cell bodies of a specific subset of olfactory receptor neurons (ORNs) projecting to a limited subset of glomeruli. The heavily labeled ORNs do not follow the typical OR expression zones in the epithelium but appear similar to the "patch" expression pattern of mOR37 receptors. The most heavily reactive glomeruli exhibit a striking reproducible pattern in the ventral olfactory bulb (OB). Some glomeruli of the OB contain calcitonin gene-related peptide (CGRP)-immunoreactive fibers of the trigeminal nerve. However, double-label immunocytochemistry for CGRP and beta-galactosidase rendered no correlation between trigeminal innervation and the degree of innervation by NT-3-expressing ORNs. Thus, the timing and presence of beta-galactosidase in a subset of ORNs suggests that NT-3 plays a role in synaptogenesis and/or synapse function in a specific subset of ORNs within the olfactory bulb.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Female
  • Gene Expression Regulation, Developmental / physiology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Neurotrophin 3 / analysis
  • Neurotrophin 3 / biosynthesis*
  • Neurotrophin 3 / genetics
  • Olfactory Receptor Neurons / chemistry
  • Olfactory Receptor Neurons / embryology
  • Olfactory Receptor Neurons / metabolism*

Substances

  • Neurotrophin 3