Language acquisition in humans relies on abilities like abstraction and use of syntactic rules, which are absent in other animals. The neural correlate of acquiring new linguistic competence was investigated with two functional magnetic resonance imaging (fMRI) studies. German native speakers learned a sample of 'real' grammatical rules of different languages (Italian or Japanese), which, although parametrically different, follow the universal principles of grammar (UG). Activity during this task was compared with that during a task that involved learning 'unreal' rules of language. 'Unreal' rules were obtained manipulating the original two languages; they used the same lexicon as Italian or Japanese, but were linguistically illegal, as they violated the principles of UG. Increase of activation over time in Broca's area was specific for 'real' language acquisition only, independent of the kind of language. Thus, in Broca's area, biological constraints and language experience interact to enable linguistic competence for a new language.