Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease

Int J Biochem Cell Biol. 2003 Nov;35(11):1505-35. doi: 10.1016/s1357-2725(03)00133-x.

Abstract

The processing of amyloid precursor protein (APP) generates amyloid-beta (Abeta) peptides 1-40 and 1-42. The latter is neurotoxic and its accumulation results in amyloid fibril formation and the generation of senile plaques, the hallmark of Alzheimer's disease (AD). Whilst there has been considerable progress made in understanding the generation of Abeta by alpha-, beta- and gamma-secretase activity on APP, recently enzymes involved in the degradation of Abeta have been identified including neprilysin and insulin-degrading enzyme (IDE). We review the pathways involved in proteolytic processing of APP and discuss the potential implications of aberrant proteolysis on neurodegeneration. It is conceivable that single nucleotide polymorphisms (SNPs) in the regulatory regions of genes in these proteolytic cascades, which alter their expression, could contribute to some of the age-related changes seen in AD.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology
  • Amyloid Precursor Protein Secretases
  • Amyloid beta-Protein Precursor / chemistry
  • Amyloid beta-Protein Precursor / metabolism*
  • Animals
  • Aspartic Acid Endopeptidases
  • Endopeptidases / metabolism
  • Humans
  • Protein Processing, Post-Translational*

Substances

  • Amyloid beta-Protein Precursor
  • Amyloid Precursor Protein Secretases
  • Endopeptidases
  • Aspartic Acid Endopeptidases
  • BACE1 protein, human