Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of HIV disease. Exposure of human macrophages to HHV-6A or HHV-6B profoundly impaired their ability to produce interleukin 12 (IL-12) upon stimulation with interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). By contrast, the production of tumor necrosis factor-alpha (TNF-alpha); regulated on activation, normal T-cell expressed and secreted (RANTES); and macrophage inflammatory protein 1 beta (MIP-1 beta) was not negatively affected. To exclude the involvement of IL-12-suppressive cytokines, such as IL-10 and TNF-alpha, the viral stocks were fractionated by ultra-centrifugation. The bulk of the suppressive activity was recovered within the virion-rich pelleted fraction that was virtually devoid of such cytokines. IL-12 suppression was independent of viral replication, and the effect was not abrogated upon ultraviolet-light inactivation of the viral inoculum. The mechanism of HHV-6-mediated IL-12 suppression was investigated by RNase protection assays, which demonstrated unaltered levels of IL-12 p35 mRNA and only a modest reduction in p40 mRNA, which was insufficient to account for the near-complete loss of both extracellular and intracellular IL-12 protein. Moreover, both the IFN-gamma and the LPS signaling pathways were intact in HHV-6-treated cells. These data suggest that HHV-6 can dramatically affect the generation of effective cellular immune responses, providing a novel potential mechanism of HHV-6-mediated immunosuppression.