Hydrolysis of surfactant phospholipids by secreted phospholipases A(2) (sPLA(2)) contributes to surfactant dysfunction in acute respiratory distress syndrome. The present study demonstrates that sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X efficiently hydrolyze surfactant phospholipids in vitro. In contrast, sPLA(2)-IIC, -IID, -IIE, and -IIF have no effect. Since purified surfactant protein A (SP-A) has been shown to inhibit sPLA(2)-IIA activity, we investigated the in vitro effect of SP-A on the other active sPLA(2) and the consequences of sPLA(2)-IIA inhibition by SP-A on surfactant phospholipid hydrolysis. SP-A inhibits sPLA(2)-X activity, but fails to interfere with that of sPLA(2)-V. Moreover, in vitro inhibition of sPLA(2)-IIA-induces surfactant phospholipid hydrolysis correlates with the concentration of SP-A in surfactant. Intratracheal administration of sPLA(2)-IIA to mice causes hydrolysis of surfactant phosphatidylglycerol. Interestingly, such hydrolysis is significantly higher for SP-A gene-targeted mice, showing the in vivo inhibitory effect of SP-A on sPLA(2)-IIA activity. Administration of sPLA(2)-IIA also induces respiratory distress, which is more pronounced in SP-A gene-targeted mice than in wild-type mice. We conclude that SP-A inhibits sPLA(2) activity, which may play a protective role by maintaining surfactant integrity during lung injury.