Purpose: To evaluate time-resolved, multiphasic 3D MR angiography (MRA) for the non-invasive assessment of the pulmonary vascular system in children.
Materials and methods: 10 children aged 6 to 15 years (mean age 10 years) ware examined on a 1.5 T whole body MR system with time-resolved, multiphasic 3D MRA after injection of 0.2 mmol/kg body weight of Gd-DTPA. With the use of an ultrafast gradient echo pulse sequence with asymmetric k-space filling and very short echo and repetition times, a nominal spatial resolution of 1.4 x 1.4 x 2.0 mm3 could be achieved with a scan time of 5.6 and 6.2 seconds for a single 3D data set. Two radiologists, who were blinded to the clinical diagnosis, analyzed the image data in consensus. The image analysis included the assessment of the image contrast and artifacts as well as a quantitative analysis of the signal-to-noise (SNR) and contrast-to-noise ratios (CNR) for central and peripheral lung vessel segments.
Results: The children tolerated all examinations without any side effects. The referral diagnosis, which was based on echocardiography, catheter angiography and surgery, was confirmed by MRA in all cases. The image contrast was rated at least satisfactory in all but one case (19 of 20) and no artifacts were observed. The quantitative analysis of the SNR and CNR in the pulmonary arteries and veins confirmed the reader analysis of a high and uniform contrast throughout the entire pulmonary circulation.
Conclusion: Time-resolved multiphasic 3D MRA allows a non-invasive diagnostic evaluation of the pulmonary circulation in children. In view of the excellent image quality, MRA may replace conventional diagnostic catheter angiography in the near future.