Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, U.S.A

Environ Sci Technol. 2003 Jun 15;37(12):2640-5. doi: 10.1021/es026221h.

Abstract

The effects of temperature on Cs+ sorption and desorption were investigated in subsurface sediments from the U.S. Department of Energy Hanford Site. The site has been contaminated at several locations by the accidental leakage of high-level nuclear waste (HLW) containing 137Cs+. The high temperature of the self-boiling, leaked HLW fluid and the continuous decay of various radionuclides carried by the waste supernatant have resulted in elevated vadose temperatures (currently up to 72 degrees C) below the Hanford S-SX tank farm that have dissipated slowly from the time of leakage (1970). The effect of temperature on Cs+ sorption was evaluated through batch binary Cs(+)-Na+ exchange experiments on pristine sediments, while Cs+ desorption was studied in column experiments using 137Cs(+)-contaminated sediments. Cs+ adsorption generally decreased with increasing temperature, with a more apparent decrease at low aqueous Cs+ concentration (10(-10)-10(-6) mol/L). Cs+ desorption from the contaminated sediments increased with increasing temperature. The results indicated that the free energy of Na(+)-Cs+ exchange on the Hanford sediment had a significant enthalpy component that was estimated to be -17.87 (+/- 2.01) and -4.82 (+/- 0.44) kJ/mol (at 298 degrees C) for the high- and low-affinity exchange sites, respectively. Both Cs+ adsorption and desorption at elevated temperature could be well simulated by a two-site ion exchange model, with the conditional exchange constants corrected by the exchange enthalpy effect. The effect of temperature on Cs+ desorption kinetics was also evaluated using a stop-flow technique. The kinetics of desorption of the exchangeable pool (which was less than the total adsorbed concentration) were found to be rapid under the conditions studied.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Cesium / analysis*
  • Cesium Radioisotopes / analysis*
  • Geologic Sediments / analysis*
  • Geologic Sediments / chemistry
  • Hot Temperature
  • Radioactive Waste / analysis*
  • Soil Pollutants, Radioactive / analysis
  • Temperature*
  • Washington
  • Water Pollutants, Radioactive / analysis

Substances

  • Cesium Radioisotopes
  • Radioactive Waste
  • Soil Pollutants, Radioactive
  • Water Pollutants, Radioactive
  • Cesium