Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8

J Anim Sci. 2003 Jul;81(7):1706-14. doi: 10.2527/2003.8171706x.

Abstract

Ovulation rate is an integral component of litter size in swine, but is difficult to directly select for in commercial swine production. Because a QTL has been detected for ovulation rate at the terminal end of chromosome 8p, genetic markers for this QTL would enable direct selection for ovulation rate in both males and females. Eleven genes from human chromosome 4p16-p15, as well as one physiological candidate gene, were genetically mapped in the pig. Large insert swine genomic libraries were screened, clones were isolated and then screened for microsatellite repeats, and informative microsatellite markers were developed for seven genes (GNRHR, IDUA, MAN2B2, MSX1, PDE6B, PPP2R2C, and RGS12). Three genes (LRPAP1, GPRK2L, and FLJ20425) were mapped using genotyping assays developed from single nucleotide polymorphisms. Two genes were assigned since they were present in clones that contained mapped markers (HGFAC and HMX1). The resulting linkage map of pig chromosome 8 contains markers associated with 14 genes in the first 27 cM. One inversion spanning at least 3 Mb in the human genome was detected; all other differences could be explained by resolution of mapping techniques used. Fourteen of the most informative microsatellite markers in the first 27 cM of the map were genotyped across the entire MARC swine resource population, increasing the number of markers typed from 2 to 14 and more than doubling the number ofgenotyped animals with ovulation rate data (295 to 600). Results from the revised data set for the QTL analysis, assuming breed specific QTL alleles, indicated that the most likely position of the QTL resided at 4.85 cM on the new linkage map (F1,592 = 20.5150, genome-wide probability less than 0.015). The updated estimate of the effect of an allele substitution was -1.65 ova for the Meishan allele. The F-ratio peak was closest to markers for MAN2B2 (4.80 cM) and was flanked on the other side by markers for PPP2R2C. Two positional candidate genes included in this study are MAN2B2 and RGS12. These results validate the presence of a QTL affecting ovulation rate on chromosome 8 and facilitate selection of positional candidate genes to be evaluated.

MeSH terms

  • Animals
  • Chromosome Mapping*
  • Female
  • Genetic Markers
  • Genotype
  • Male
  • Microsatellite Repeats
  • Ovulation / genetics*
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci*
  • Quantitative Trait, Heritable
  • Selection, Genetic
  • Swine / genetics*

Substances

  • Genetic Markers