Background: Oxidative stress seems to be present in all forms of hypertension. Thus, we tested the hypothesis that high intraluminal pressure (Pi) itself, by activating vascular oxidases, elicits increased superoxide (O2*-) production interfering with flow-induced dilation.
Methods and results: Isolated, cannulated rat femoral arterial branches were exposed in vitro (for 30 minutes) to normal Pi (80 mm Hg) or high Pi (160 mm Hg). High Pi significantly increased vascular O2*- production (as measured by lucigenin chemiluminescence and ethidium bromide fluorescence) and impaired endothelium-dependent dilations to flow; these effects could be reversed by superoxide dismutase. Administration of the NAD(P)H oxidase inhibitor diphenyleneiodonium, apocynin, the protein kinase C (PKC) inhibitor chelerythrine or staurosporin or the removal of extracellular Ca2+ during high Pi treatment prevented the increases in O2*- production, whereas administration of losartan or captopril had no effect. High Pi resulted in significant increases in intracellular Ca2+ ([Ca2+]i) in the vascular wall (fura 2 fluorescence) and phosphorylation of PKCalpha (Western blotting). The PKC activator phorbol myristate acetate significantly increased vascular O2*- production, which was inhibited by superoxide dismutase, diphenyleneiodonium, chelerythrine, or removal of extracellular Ca2+. Both high Pi and phorbol myristate acetate increased the phosphorylation of the NAD(P)H oxidase subunit p47phox.
Conclusions: High Pi itself elicits arterial O2.- production, most likely by PKC-dependent activation of NAD(P)H oxidase, thus providing a potential explanation for the presence of oxidative stress and endothelial dysfunction in various forms of hypertension and the vasculoprotective effect of antihypertensive agents of different mechanisms of action.