The Hmgi protein family of chromosomal architectural factors is extensively studied for its roles in embryogenesis and its association with benign mesenchymal tumors. Although the biochemical function of Hmga1 has been studied in vitro, to provide in vivo insight into its biological function, a targeted disruption of Hmga1 was initiated. Chimeric founder mice were derived from embryonic stem (ES) cells harboring a targeted mutation in a single Hmga1 allele. These 14 different chimeric founders produced 494 black progeny. Since none of these 494 progeny were agouti, none of them were derived from ES cells. Control injections of the wild-type ES cell lines resulted in ES cell derived agouti mice, indicating that the ES cells were totipotent. Therefore, our results indicate that one intact Hmga1 allele was not sufficient for germ-line transmission of the ES cells. Seven chimeric founder mice that were examined histologically demonstrated aberrant regions in their reproductive organs. Aberrant regions of seminiferous tubules were reduced in diameter, demonstrated vacuolated Sertoli cells, and had an absolute deficiency of sperm. While the Hmga1(+/-) ES cells were shown to contribute to the formation of the epididymides, they did not significantly contribute to the testes of chimeric founder mice. No sperm isolated from any of the Hmga1(+/-) chimeric mice were shown to arise from the ES cells, as none of them contained the targeted disruption of the Hmga1 gene. Our results suggest that both alleles of Hmga1 are required for normal sperm production in the mouse.
Copyright 2003 Wiley-Liss, Inc.