Steroids regulate alternative splicing of rabbit RUSH/SMARCA3, an SWI/SNF-related transcription factor. Transactivation was evaluated in 2057 bp of genomic sequence. Truncation analysis identified a minimal 252-bp region with strong basal promoter activity in transient transfection assays. The size of the 5'-untranslated region (233 bp) and the transcription start site were determined by primer extension analysis. The transcription start site mapped to a consensus initiator (Inr) element in a TATA-less region with a downstream promoter element (+29). These elements were authenticated by mutation/deletion analysis. The Inr/downstream promoter element combination is conserved in the putative core promoter (-35/+35) of the human ortholog, suggesting that transcription initiation is similarly conserved. Two Sp1 sites that are also conserved in the putative promoter of human SMARCA3 and a RUSH binding site (-616/-611) that is unique to the rabbit promoter repress basal transcription. These sites were variously authenticated by gel shift and chromatin immunoprecipitation assays. Analysis of the proximal promoter showed the -162/+90 region was required for progesterone responsiveness in transient transfection assays. Subsequent mutation/deletion analysis revealed a progesterone receptor half-site mediated induction by progesterone. An overlapping Y-box (in the reverse ATTGG orientation) repressed basal transcription and progesterone-induced transcriptional activation in the presence of the Sp1 sites. The specificity of progesterone receptor and transcription factor NF-Y binding were authenticated by gel shift assays. Chromatin immunoprecipitation assays confirmed the Y-box effects were mediated in a DNA binding-dependent fashion. This represents a unique regulatory scenario in which ligand-dependent transactivation by the progesterone receptor is subject to Sp1/NF-Y repression.