Osteoporosis is a common skeletal disease characterized by low bone mineral density (BMD), deterioration of bone microarchitecture and increased fracture risk. It is a complex disease that has high social and economic costs. Osteoporosis and its associated phenotypes are under the strong genetic control. Identification and characterization of specific loci or genes involved in determining osteoporosis and its associated phenotypes will contribute to a greater understanding of the pathogenesis of osteoporosis, and ultimately might lead to the development of better diagnosis, prevention and treatment strategies. Efforts to identify osteoporosis genes have focused on three approaches: animal models, candidate gene approach, and genome-wide scans. In this article, we review the current status for mapping and identification of genes for osteoporosis, with a focus on some promising regions and future prospects.